Площадь основания призмы: от треугольной до многоугольной

Разные призмы непохожи друг на друга. В то же время у них много общего. Чтобы найти площадь основания призмы, потребуется разобраться в том, какой вид оно имеет.

Общая теория

Призмой является любой многогранник, боковые стороны которого имеют вид параллелограмма. При этом в ее основании может оказаться любой многогранник - от треугольника до n-угольника. Причем основания призмы всегда равны друг другу. Что не относится к боковым граням — они могут существенно различаться по размерам.

При решении задач встречается не только площадь основания призмы. Может потребоваться знание боковой поверхности, то есть всех граней, которые не являются основаниями. Полной поверхностью уже будет объединение всех граней, которые составляют призму.

Иногда в задачах фигурирует высота. Она является перпендикуляром к основаниям. Диагональю многогранника является отрезок, который соединяет попарно две любые вершины, не принадлежащие одной грани.

Следует отметить, что площадь основания прямой призмы или наклонной не зависит от угла между ними и боковыми гранями. Если у них одинаковые фигуры в верхней и нижней гранях, то их площади будут равными.

площадь основания призмы

Треугольная призма

Она имеет в основании фигуру, имеющую три вершины, то есть треугольник. Он, как известно, бывает разным. Если треугольник прямоугольный, то достаточно вспомнить, что его площадь определяется половиной произведения катетов.

Математическая запись выглядит так: S = ½ ав.

Чтобы узнать площадь основания треугольной призмы в общем виде, пригодятся формулы: Герона и та, в которой берется половина стороны на высоту, проведенную к ней.

Первая формула должна быть записана так: S = √(р (р-а) (р-в) (р-с)). В этой записи присутствует полупериметр (р), то есть сумма трех сторон, разделенная на два.

Вторая: S = ½ на * а.

Если требуется узнать площадь основания треугольной призмы, которая является правильной, то треугольник оказывается равносторонним. Для него существует своя формула: S = ¼ а2 * √3.

площадь основания треугольной призмы

Четырехугольная призма

Ее основанием является любой из известных четырехугольников. Это может быть прямоугольник или квадрат, параллелепипед или ромб. В каждом случае для того, чтобы вычислить площадь основания призмы, будет нужна своя формула.

Если основание — прямоугольник, то его площадь определяется так: S = ав, где а, в — стороны прямоугольника.

Когда речь идет о четырехугольной призме, то площадь основания правильной призмы вычисляется по формуле для квадрата. Потому что именно он оказывается лежащим в основании. S = а2.

В случае когда основание — это параллелепипед, будет нужно такое равенство: S = а * на. Бывает такое, что даны сторона параллелепипеда и один из углов. Тогда для вычисления высоты потребуется воспользоваться дополнительной формулой: на = в * sin А. Причем угол А прилегает к стороне «в», а высота на противолежащая к этому углу.

Если в основании призмы лежит ромб, то для определения его площади будет нужна та же формула, что для параллелограмма (так как он является его частным случаем). Но можно воспользоваться и такой: S = ½ d1 d2. Здесь d1 и d2 - две диагонали ромба.

площадь основания призмы равна

Правильная пятиугольная призма

Этот случай предполагает разбиение многоугольника на треугольники, площади которых узнать проще. Хотя бывает, что фигуры могут быть с другим количеством вершин.

Поскольку основание призмы — правильный пятиугольник, то он может быть разделен на пять равносторонних треугольников. Тогда площадь основания призмы равна площади одного такого треугольника (формулу можно посмотреть выше), умноженной на пять.

площадь основания правильной призмы

Правильная шестиугольная призма

По принципу, описанному для пятиугольной призмы, удается разбить шестиугольник основания на 6 равносторонних треугольников. Формула площади основания такой призмы подобна предыдущей. Только в ней площадь равностороннего треугольника следует умножать на шесть.

Выглядеть формула будет таким образом: S = 3/2 а2 * √3.

площадь основания прямой призмы

Задачи

№ 1. Дана правильная прямая четырехугольная призма. Ее диагональ равна 22 см, высота многогранника — 14 см. Вычислить площадь основания призмы и всей поверхности.

Решение. Основанием призмы является квадрат, но его сторона не известна. Найти ее значение можно из диагонали квадрата (х), которая связана с диагональю призмы (d) и ее высотой (н). х2 = d2 - н2. С другой стороны, этот отрезок «х» является гипотенузой в треугольнике, катеты которого равны стороне квадрата. То есть х2 = а2 + а2. Таким образом получается, что а2 = (d2 - н2)/2.

Подставить вместо d число 22, а «н» заменить его значением — 14, то получается, что сторона квадрата равна 12 см. Теперь просто узнать площадь основания: 12 * 12 = 144 см2.

Чтобы узнать площадь всей поверхности, нужно сложить удвоенное значение площади основания и учетверенную боковую. Последнюю легко найти по формуле для прямоугольника: перемножить высоту многогранника и сторону основания. То есть 14 и 12, это число будет равно 168 см2. Общая площадь поверхности призмы оказывается 960 см2.

Ответ. Площадь основания призмы равна 144 см2. Всей поверхности - 960 см2.

№ 2. Дана правильная треугольная призма. В основании лежит треугольник со стороной 6 см. При этом диагональ боковой грани составляет 10 см. Вычислить площади: основания и боковой поверхности.

Решение. Так как призма правильная, то ее основанием является равносторонний треугольник. Поэтому его площадь оказывается равна 6 в квадрате, умноженному на ¼ и на корень квадратный из 3. Простое вычисление приводит к результату: 9√3 см2. Это площадь одного основания призмы.

Все боковые грани одинаковые и представляют собой прямоугольники со сторонами 6 и 10 см. Чтобы вычислить их площади, достаточно перемножить эти числа. Потом умножить их на три, потому что боковых граней у призмы именно столько. Тогда площадь боковой поверхности оказывается раной 180 см2.

Ответ. Площади: основания - 9√3 см2, боковой поверхности призмы - 180 см2.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.
Новости и общество
Новости и общество
Новости и общество