Термодинамика - это... Определение, законы, применение и процессы

Что такое термодинамика? Это раздел физики, который занимается изучением свойств макроскопических систем. При этом под изучение также попадают способы превращения энергии и методы ее передачи. Термодинамика - это раздел физики, который изучает процессы, происходящие в системах, и их состояния. О том, что еще попадает в список изучаемых ей вещей, мы сегодня и поговорим.

Определение

На картинке ниже можно увидеть пример термограммы, полученной при изучении кувшина с горячей водой.

термодинамика это

Термодинамика - это наука, которая опирается на обобщенные факты, полученные опытным путем. Происходящие в термодинамических системах процессы описываются при помощи использования макроскопических величин. В их список входят такие параметры, как концентрация, давление, температура и тому подобные. Понятное дело, что к отдельным молекулам они неприменимы, а сводятся к описанию системы в общем ее виде (в отличие от тех величин, которые используются в электродинамике, например).

Термодинамика - это раздел физики, который также имеет и свои законы. Они, подобно остальным, носят общий характер. Конкретные детали строения того или иного выбранного нами вещества не окажут значительного влияния на характер законов. Именно поэтому говорят, что данный раздел физики является одним из наиболее применимых (или, вернее сказать, успешно применимых) в науке и технике.

Применение

начала термодинамики

Перечислять примеры можно очень долго. Например, много решений, основанных на термодинамических законах, можно встретить в области тепловой техники или электроэнергетики. Что и говорить об описании и понимании химических реакций, фазовых переходов, явлений переноса. В некотором роде термодинамика “сотрудничает” с квантовой динамикой. Сфера их соприкосновения - это описание явления черных дыр.

Законы

применение термодинамики

Картинка выше демонстрирует суть одного из термодинамических процессов - конвекции. Теплые слои вещества поднимаются наверх, холодные - опускаются вниз.

Альтернативное название законов, которое, кстати, употребляется не в пример чаще, это начала термодинамики. На сегодняшний день их известно три (плюс одно “нулевое“, или “общее”). Но перед тем как говорить о том, что предполагает каждый из законов, попытаемся ответить на вопрос о том, что такое начала термодинамики.

Они представляют собой совокупность определенных постулатов, которые ложатся в основу понимания происходящих в макросистемах процессов. Положения начал термодинамики устанавливались эмпирическим путем по мере проведения целых серий опытов и научных исследований. Таким образом, существуют определенные доказательства, позволяющие нам взять постулаты на вооружение без единого сомнения в их точности.

Некоторые люди задаются вопросом о том, зачем термодинамике нужны эти самые законы. Ну, можно сказать, что необходимость их использования обусловлена тем, что в данном разделе физики макроскопические параметры описываются в общем виде, без какого-либо намека на рассмотрения их микроскопической природы или особенностей того же плана. Это сфера не термодинамики, а уже статистической физики, если говорить конкретнее. Еще одной важной вещью является тот факт, что начала термодинамики не зависят друг от друга. То есть одно из второго вывести не получится.

Применение

процессы в термодинамике

Применение термодинамики, как было сказано ранее, идет по многим направлениям. За основу берется, кстати, одно из ее начал, которое иначе интерпретируется в форме закона сохранения энергии. Термодинамические решения и постулаты успешно внедряются в такие отрасли, как энергетическая промышленность, биомедицина, химия. Вот в биологической энергетике повсеместно используется закон сохранения энергии и закон вероятности и направленности термодинамического процесса. Наряду с этим, там используются три наиболее распространенных понятия, на которых базируется вся работа и ее описание. Это термодинамическая система, процесс и фаза процесса.

Процессы

Процессы в термодинамике имеют разную степень сложности. Их насчитывается семь штук. Вообще, под процессом в таком случае следует понимать не что иное, как изменение макроскопического состояния, в которое система была приведена ранее. Следует понимать, что разница между условным начальным состоянием и конечным результатом может быть ничтожной.

Если разница бесконечно мала, то произошедший процесс мы вполне можем назвать элементарным. Если мы будем обсуждать процессы, то придется прибегнуть к упоминанию дополнительных терминов. Один из них - это “рабочее тело”. Рабочим телом называется система, в которой происходит один тепловой процесс или несколько.

Условно процессы подразделяются на неравновесные и равновесные. В случае с последним все состояния, через которые предстоит пройти термодинамической системе, являются, соответственно, неравновесными. Зачастую изменение состояний идет в таких случаях быстрыми темпами. А вот равновесные процессы близки к квазистатическим. В них изменения проходят на порядок медленнее.

Тепловые процессы, происходящие в термодинамических системах, могут быть как обратимыми, так и необратимыми. Для того чтобы понять суть, разобьем в своем представлении последовательность действий на определенные промежутки. Если мы можем сделать тот же процесс в обратном направлении с теми же “промежуточными станциями”, то его можно назвать обратимым. В противном случае сделать это не получится.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.