Человечество всегда пребывало в поисках новых источников энергии, способных решить множество проблем. Однако далеко не всегда они являются безопасными. Так, в частности, широко применяемые сегодня атомные реакторы хотя и способны выработать просто колоссальное количество такой нужной всем электрической энергии, все же несут в себе смертельную опасность. Но, помимо использования ядерной энергии в мирных целях, некоторые страны нашей планеты научились использовать ее и в военных, в особенности для создания ядерных боеголовок. В данной статье пойдет речь об основе такого разрушительного оружия, название которой - оружейный плутоний.
Краткая справка
В этой компактной форме металла содержится минимум 93,5 % изотопа 239Pu. Оружейный плутоний назвали так для того, чтобы его было можно отличить от «реакторного собрата». В принципе, плутоний всегда образовывается в абсолютно любом ядерном реакторе, который, в свою очередь, работает на низкообогащённом или природном уране, содержащем, по большей части, изотоп 238U.
Применение в военной отрасли
Оружейный плутоний 239Pu – основа ядерного вооружения. При этом применение изотопов с массовыми числами 240 и 242 неактуально, поскольку они создают очень высокий фон нейтронов, что в итоге затрудняет создание и конструирование высокоэффективных ядерных боекомплектов. Помимо этого, изотопы плутония 240Pu и 241Pu обладают значительно меньшим периодом полураспада по сравнению с 239Pu, поэтому детали из плутония сильно нагреваются. Именно в связи с этим в ядерный боеприпас инженеры вынуждены дополнительно добавлять элементы для отвода лишнего тепла. Кстати, 239Pu в чистом виде теплее тела человека. Нельзя также не учитывать и факт того, что продукты процесса распада тяжелых изотопов подвергают вредоносным изменениям кристаллическую решетку металла, а это вполне закономерно изменяет конфигурацию деталей из плутония, что, в конце концов, может вызвать полный отказ ядерного взрывного устройства.
По большому счету, все перечисленные трудности можно преодолеть. И на практике уже неоднократно проходили испытания взрывных устройств на основе именно «реакторного» плутония. Но следует понимать, что в ядерных боеприпасах далеко не последнюю позицию занимает их компактность, малая собственная масса, долговечность и надежность. В связи с этим в них применяется исключительно оружейный плутоний.
Конструктивные особенности производственных реакторов
Практически весь плутоний в России был выработан в реакторах, оборудованных графитовым замедлителем. Каждый из реакторов возведен вокруг цилиндрически собранных блоков из графита.
В собранном виде графитовые блоки имеют между собой специальные щели для обеспечения беспрерывной циркуляции охладителя, в качестве которого используется азот. В собранной конструкции имеются и вертикально расположенные каналы, созданные для прохождения по ним водяного охлаждения и топлива. Сама по себе сборка жестко опирается на структуру с отверстиями под каналами, используемыми для отгрузки уже облученного топлива. При этом каждый из каналов находится в тонкостенной трубе, отлитой из легковесного и особопрочного алюминиевого сплава. Большая часть описываемых каналов имеет 70 топливных стержней. Вода для охлаждения протекает непосредственно вокруг стержней с топливом, отводя от них излишки тепла.
Повышение мощности производственных реакторов
Изначально первый реактор «Маяк» функционировал с мощностью 100 тепловых МВт. Однако главный руководитель советской программы по разработке ядерного оружия Игорь Курчатов внес предложение, которое заключалось в том, чтобы реактор в зимнее время работал с мощностью 170-190 МВт, а в летний период времени – 140-150 МВт. Такой подход позволил реактору производить почти 140 граммов драгоценного плутония в сутки.
В 1952 году были проведены полноценные научно-исследовательские работы, с целью увеличения производственной мощности функционирующих реакторов такими методами:
- Путем увеличения потока воды, используемой для охлаждения и протекающей через активные зоны ядерной установки.
- Посредством наращивания сопротивления явлению коррозии, возникающей вблизи вкладыша каналов.
- Уменьшением скорости окисления графита.
- Наращиванием температуры внутри топливных элементов.
В итоге пропускная способность циркулирующей воды значительно возросла после того, как был увеличен зазор между топливом и стенками канала. От коррозии также удалось избавиться. Для этого выбрали наиболее подходящие алюминиевые сплавы и начали активно добавлять бихромат натрия, что, в конечном счете, повысило мягкость охлаждающей воды (рН стал равен порядка 6.0-6.2). Окисление графита перестало быть актуальной проблемой после того, как для его охлаждения стали применять азот (до этого использовался исключительно воздух).
На закате 1950-х нововведения были полностью реализованы на практике, что позволило уменьшить вызываемое радиацией крайне ненужное раздувание урана, значительно снизить тепловое упрочнение стержней из урана, улучшить сопротивление оболочки и повысить контроль качества производства.
Производство на «Маяке»
"Челябинск-65" – один из тех самых секретных заводов, на котором происходило создание оружейного плутония. На предприятии было несколько реакторов, с каждым из которых мы познакомимся поближе.
Реактор А
Установка была спроектирована и создана под руководством легендарного Н. А. Доллежаля. Работала она с мощностью 100 МВт. В реакторе имелось 1149 вертикально расположенных управляющих и топливных каналов в графитовом блоке. Полная масса конструкции составляла порядка 1050 тонн. Практически все каналы (кроме 25) загружались ураном, полная масса которого составляла 120-130 тонн. 17 каналов использовались для управляющих стержней, а 8 - для проведения экспериментов. Максимальный показатель проектного тепловыделения топливного элемента равнялось 3,45 кВт. На первых порах реактор производил около 100 грамм плутония в день. Впервые металлический плутоний был произведен 16 апреля 1949 года.
Технологические недостатки
Практически сразу были выявлены довольно серьёзные проблемы, которые заключались в коррозии алюминиевых вкладышей и покрытия топливных элементов. Также разбухали и повреждались урановые стержни и вытекала охлаждающая вода непосредственно в сердцевину реактора. После каждой протечки реактор приходилось останавливать на время до 10 часов с целью осушить графит воздухом. В январе 1949 года были заменены вкладыши в каналы. После этого запуск установки произошел 26 марта 1949 года.
Оружейный плутоний, производство которого на реакторе А сопровождалось всяческими трудностями, вырабатывался в период 1950-1954 годов при средней мощности агрегата 180 МВт. Последующая работа реактора начала сопровождаться более интенсивным его использованием, что вполне закономерно привело и к более частым остановкам (до 165 раз в месяц). В итоге, в октябре 1963 года реактор был остановлен и возобновил свою работу лишь весной 1964 года. Свою кампанию он полностью закончил в 1987 году и за весь период многолетнего функционирования произвел 4,6 тонны плутония.
Реакторы АВ
На предприятии "Челябинск-65" три реактора АВ было решено построить осенью 1948 года. Их производственная мощность составляла 200-250 грамм плутония в день. Главным конструктором проекта был А. Савин. Каждый реактор насчитывал 1996 каналов, 65 из них были контрольными. В установках была использована техническая новинка – каждый канал снабдили специальным детектором утечки охлаждающей жидкости. Такой ход позволил менять вкладыши без прекращения работы самого реактора.
Первый год функционирования реакторов показал, что они вырабатывали порядка 260 граммов плутония в сутки. Однако уже со второго года работы мощность постепенно наращивали, и уже в 1963 году ее показатель составил 600 МВт. После второго капитального ремонта была полностью решена проблема с вкладышами, а мощность уже составила 1200 МВт с ежегодным производством плутония 270 килограмм. Эти показатели сохранились до полного закрытия реакторов.
Реактор АИ-ИР
Челябинское предприятие использовало данную установку в период с 22 декабря 1951 года до 25 мая 1987 года. Помимо урана, реактор также производил кобальт-60 и полоний-210. Изначально на объекте производили тритий, но позже начали получать и плутоний.
Также завод по переработке оружейного плутония имел в строю реакторы, работающие на тяжелой воде и единственный легководный реактор (имя его – «Руслан»).
Сибирский гигант
"Томск-7" – именно такое название носил завод, на котором расположились пять реакторов для создания плутония. Каждый из агрегатов применял графит с целью замедлить нейтроны и обычную воду для обеспечения надлежащего охлаждения.
Реактор И-1 работал с системой охлаждения, в которой вода проходила единожды. Однако остальные четыре установки были снабжены замкнутыми первичными контурами, оборудованными теплообменниками. Такая конструкция позволяла дополнительно вырабатывать еще и пар, который в свою очередь помогал в производстве электричества и обогрева различных жилых помещений.
"Томск-7" имел также и реактор под названием ЭИ-2, который, в свою очередь, имел двойное назначение: производил плутоний и за счет вырабатываемого пара генерировал 100 МВт электроэнергии, а также 200 МВт тепловой энергии.
Важная информация
По заверениям ученых, полураспад оружейного плутония составляет порядка 24 360 лет. Огромная цифра! В связи с этим особо острым становится вопрос: «Как же правильно обойтись с отходами производства данного элемента?» Наиболее оптимальным вариантом считается постройка специальных предприятий для последующей переработки оружейного плутония. Объясняется это тем, что в таком случае элемент уже нельзя будет использовать в военных целях и будет подконтролен человеку. Именно так проводится утилизация оружейного плутония в России, однако Соединенные Штаты Америки пошли другим путем, нарушив тем самым свои международные обязательства.
Так, американское правительство предлагает уничтожать высокообогащенное ядерное топливо не промышленным способом, а путем разбавления плутония и хранения его в специальных емкостях на глубине равной 500 метрам. Само собой, что в таком случае материал легко можно будет в любой момент извлечь из земли и вновь пустить его на военные цели. Как утверждает президент РФ Владимир Путин, изначально страны договаривались уничтожать плутоний не таким методом, а проводить утилизацию на промышленных объектах.
Отдельного внимания заслуживает стоимость оружейного плутония. По оценкам экспертов, десятки тонн этого элемента вполне могут стоить несколько миллиардов американских долларов. А некоторые специалисты ми вовсе оценили 500 тонн оружейного плутония аж в 8 триллионов долларов. Сумма реально впечатляющая. Чтобы было понятнее, насколько это большие деньги, скажем, что в последние десять лет 20 века среднегодовой показатель ВВП России составлял 400 миллиардов долларов. То есть, по сути, реальная цена оружейного плутония равнялась двадцати годовым ВВП Российской Федерации.