Интегральные белки мембраны, их функции

Клеточная мембрана — структурный элемент клетки, ограждающий ее от внешней среды. При помощи нее она взаимодействует с межклеточным пространством и является частью биологической системы. Ее мембрана имеет особую структуру, состоящую из липидного бислоя, интегральных и полуинтегральных белков. Последние являются крупными молекулами, выполняющими различные функции. Чаще всего они участвуют в транспортировке специальных веществ, концентрация которых по разные стороны мембраны тщательно регулируется.

интегральные белки

Общий план строения клеточной мембраны

Плазматическая мембрана — это совокупность молекул жиров и сложных белков. Ее фосфолипиды своими гидрофильными остатками располагаются по разные стороны мембраны, образуя липидный бислой. Но их гидрофобные участки, состоящие из остатков жирных кислот, обращены внутрь. Это позволяет создать текучую жидко-кристаллическую структуру, которая постоянно может менять форму и находится в динамическом равновесии.

интегральные белки мембраны

Такая особенность строения позволяет ограничить клетку от межклеточного пространства, потому мембрана в норме непроницаема для воды и всех растворенных в ней веществ. В толщу мембраны погружены некоторые сложные интегральные белки, полуинтегральные и поверхностные молекулы. Посредством их клетка взаимодействует с окружающим миром, поддерживая гомеостаз и образуя целостные биологические ткани.

Белки плазматической мембраны

Все белковые молекулы, которые расположены на поверхности или в толще плазматической мембраны, делятся на виды в зависимости от глубины их залегания. Выделяют интегральные белки, пронизывающие липидный бислой, полуинтегральные, которые берут свое начало в гидрофильном участке мембраны и выходят наружу, а также поверхностные — расположенные на внешней площади мембраны. Интегральные белковые молекулы особым образом пронизывают плазмолемму и могут быть соединены с рецепторными аппаратом. Многие такие молекулы пронизывают всю мембрану и носят название трансмембранных. Остальные заякорены в гидрофобном участке мембраны и выходят либо на внутреннюю, либо на внешнюю поверхность.

функции интегральных белков

Ионные каналы клетки

Чаще всего в качестве интегральных сложных белков выступают ионные каналы. Эти структуры ответственны за активный транспорт некоторых веществ в клетку или из нее. Они состоят из нескольких белковых субъединиц и активного центра. При воздействии определенного лиганда на активный центр, представленный специфическим набором аминокислот, происходит смена конформации ионного канала. Такой процесс позволяет открыть или закрыть канал, тем самым запускать или прекращать активный транспорт веществ.

интегральный мембранный белок

Некоторые ионные канала большую часть времени открыты, однако при поступлении сигнала от рецепторного белка или при присоединении специфического лиганда могут закрываться, прекращая ионный ток. Этот принцип работы сводится к тому, что пока не получен рецепторный или гуморальный сигнал на прекращение активного транспорта некого вещества, он будет осуществляться. Как только сигнал поступил, транспорт следует прекратить.

Большая часть интегральных белков, выполняющих функции ионных каналов, работают на запрет транспорта, пока к активному центру не присоединится специфический лиганд. Тогда произойдет активация транспорта ионов, что позволит перезарядить мембрану. Данный алгоритм работы ионных каналов характерен для клеток возбудимых тканей человека.

Типы встроенных белков

Все мембранные белки (интегральные, полуинтегральные и поверхностные) выполняют важные функции. Именно из-за особой роли в жизнедеятельности клетки они и имеют определенный тип встроенности в фосфолипидную мембрану. Некоторые белки, чаще это ионные каналы, для реализации своих функций должны полностью пресекать плазмолемму. Тогда их называют политопическими, то есть трансмембранными. Другие же локализованы своим якорным участком в гидрофобном участке фосфолипидного бислоя, а активным центром выходят только на внутреннюю или только на внешнюю поверхность клеточной мембраны. Тогда их называют монотопическими. Чаще они являются рецепторными молекулами, которые принимают сигнал с поверхности мембраны и передают его специальному «посреднику».

белки интегральные полуинтегральные и

Обновление интегральных белков

Все интегральные молекулы полностью пронизывают гидрофобный участок и закрепляются в нем таким образом, что допускается их перемещение только вдоль мембраны. Однако западение белка внутрь клетки, ровно как и самопроизвольный отрыв белковой молекулы от цитолеммы, невозможны. Существует вариант, при котором интегральные белки мембраны попадут в цитоплазму. Он связан с пиноцитозом или фагоцитозом, то есть когда клетка захватывает твердое тело или жидкость и окружает его мембраной. Затем она втаскивается внутрь вместе с встроенными в нее белками.

интегральные белки мембраны являются

Конечно, это не самый эффективный способ обмена энергией в клетке, потому как все белки, которые ранее выполняли функции рецепторов или ионных каналов, будут переварены лизосомой. Это потребует их нового синтеза, на что потратится значимая часть энергетических запасов макроэргов. Однако в ходе «эксплуатации» молекулы ионных каналов или рецепторы часто повреждаются, вплоть до отрыва участков молекулы. Это также требует их повторного синтеза. Потому фагоцитоз, пусть он и происходит с расщеплением собственных рецепторных молекул, является еще и способом их постоянного обновления.

Гидрофобное взаимодействие интегральных белков

Как было описано выше, интегральные белки мембраны являются сложными молекулами, которые будто застревают в цитоплазматической мембране. В то же время они могут свободно плавать в ней, перемещаясь вдоль плазмолеммы, но не могут оторваться от нее и попасть в межклеточное пространство. Реализуется это за счет особенностей гидрофобного взаимодействия интегральных белков с фосфолипидами мембраны.

Активные центры интегральных белков располагаются либо на внутренней, либо на внешней поверхности липидного бислоя. А тот фрагмент макромолекулы, который отвечает за плотную фиксацию, всегда располагается среди гидрофобных участков фосфолипидов. За счет взаимодействия с ними все трансмембранные белки всегда остаются в толще клеточной оболочки.

Функции интегральных макромолекул

Любой интегральный мембранный белок имеет якорный участок, расположенный среди гидрофобных остатков фосфолипидов, и активный центр. У некоторых молекул активный центр один и располагается на внутренней или наружной поверхности мембраны. Существуют также молекулы с несколькими активными центрами. Все это зависит от функций, которые выполняют интегральные и периферические белки. Первая их функция — это активный транспорт.

Белковые макромолекулы, которые отвечают за пропуск ионов, состоят из нескольких субъединиц и регулируют ионный ток. В норме плазматическая мембрана не может пропускать гидратированные ионы, так как по своей природе является липидом. Наличие ионных каналов, которыми являются интегральные белки, позволяет ионам проникать в цитоплазму и перезаряжать клеточную мембрану. Это является основным механизмом возникновения мембранного потенциала клеток возбудимых тканей.

Рецепторные молекулы

Вторая функция интегральных молекул — это рецепторная. Один липидный бислой мембраны реализует защитную функцию и полностью ограничивает клетку от внешней среды. Однако за счет наличия рецепторных молекул, которые представлены интегральными белками, клетка может получать сигналы от окружающей среды и взаимодействовать с ней. Примером является адреналовый рецептор кардиомиоцита, белок клеточной адгезии, инсулиновый рецептор. Особым примером рецепторного белка является бактериородопсин — особый мембранный белок, который имеется у некоторых бактерий, позволяя им реагировать на освещение.

интегральные и периферические белки

Белки межклеточного взаимодействия

Третья группа функций интегральных белков — это реализация межклеточных контактов. Благодаря им одна клетка может присоединиться к другой, создавая этим цепь передачи информации. По такому механизму работают нексусы — щелевые контакты между кардиомиоцитами, по которым передается сердечный ритм. Такой же принцип работы наблюдается и у синапсов, по которым в нервных тканях передается импульс.

Посредством интегральных белков клетки могут создавать и механическую связь, что имеет важность при образовании целостной биологической ткани. Также интегральные белки могут играть роль мембранных ферментов и участвовать в передаче энергии, в том числе и нервных импульсов.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.