Полёты космических аппаратов сопряжены с огромным расходом энергии. Например, ракета-носитель «Союз», стоящая на стартовом столе и готовая к запуску, весит 307 тонн, из которых более 270 тонн составляет топливо, то есть львиная доля. С необходимостью тратить сумасшедшее количество энергии на передвижение в космическом пространстве во многом связаны трудности освоения дальних рубежей Солнечной системы.
К большому сожалению, технического прорыва на этом направлении пока не ожидается. Масса топлива остаётся одним из ключевых факторов при планировании космических миссий, и инженеры пользуются любой возможностью сэкономить горючее, чтобы продлить работу аппарата. Одним из способов экономии являются гравитационные маневры.
Как летают в космосе и что такое гравитация
Принцип перемещения аппарата в безвоздушном пространстве (среде, от которой невозможно оттолкнуться ни винтом, ни колёсами, ничем другим) един для всех типов, изготовленных на Земле, ракетных двигателей. Это – реактивная тяга. Противостоит мощности реактивного двигателя гравитация. Это сражение с законами физики было выиграно советскими учёными в 1957 году. Впервые в истории аппарат, сделанный руками человека, приобретя первую космическую скорость (около 8 км/с), стал искусственным спутником планеты Земля.
Для того чтобы вывести на околоземную орбиту аппарат весом чуть более 80 кг, потребовалось около 170 тонн (именно столько весила ракета Р-7, доставившая спутник на орбиту) железа, электроники, очищенного керосина и жидкого кислорода.
Из всех законов и принципов мироздания гравитация – это, пожалуй, один из основных. Она заправляет всем, начиная с устройства элементарных частиц, атомов, молекул и заканчивая движением галактик. Она же является и препятствием на пути освоения космического пространства.
Не только топливо
Ещё до запуска первого искусственного спутника Земли учёные чётко понимали, что не только увеличение размеров ракет и мощности их двигателей может быть залогом успеха. К поиску таких хитростей исследователей подтолкнули результаты расчётов и практических испытаний, показавших насколько затратны по горючему полёты за пределы земной атмосферы. Первым таким решением для советских конструкторов стал выбор площадки строительства космодрома.
Объяснимся. Чтобы стать искусственным спутником Земли, ракете необходимо разогнаться до 8 км/с. Но и наша планета сама находится в непрерывном движении. Любая точка, расположенная на экваторе, вращается со скоростью более 460 метров в секунду. Таким образом, ракета, вышедшая в безвоздушное пространство в районе нулевой параллели, сама по себе будет иметь бесплатных почти полкилометра в секунду.
Именно поэтому на широких просторах СССР было выбрано место поюжнее (скорость суточного вращения в Байконуре составляет около 280 м/с). Ещё более амбициозный проект, направленный на то, чтобы уменьшить влияние гравитации на ракету-носитель, появился в 1964 году. Им стал первый морской космодром «Сан-Марко», собранный итальянцами из двух буровых платформ и расположенный на экваторе. Позднее этот принцип лёг в основу международного проекта «Морской старт», успешно запускающего коммерческие спутники по сей день.
Кто был первым
А как с дальними космическими миссиями? Пионерами в использовании гравитации космических тел для изменения траектории полёта были учёные из СССР. Обратная сторона нашего естественного спутника, как известно, впервые была сфотографирована советским аппаратом «Луна-1». Важно было, чтобы после облёта Луны аппарат успел вернуться к Земле так, чтобы та была обращена к нему северным полушарием. Ведь информацию (полученные фотоизображения) необходимо было передать людям, а станции слежения, тарелки радиоантенн находились именно в северном полушарии.
Не менее удачно удалось использовать гравитационные маневры для изменения траектории космического аппарата американским учёным. Межпланетному автоматическому кораблю «Маринер 10» после пролёта вблизи Венеры необходимо было уменьшить скорость, для того чтобы перейти на более низкую околосолнечную орбиту и исследовать Меркурий. Вместо того чтобы использовать для этого маневра реактивную тягу двигателей, скорость движения аппарата была замедлена гравитационным полем Венеры.
Как это работает
Согласно закону всемирного тяготения, открытого и подтверждённого экспериментально Исааком Ньютоном, все тела, обладающие массой, притягивают друг друга. Сила этого притяжения легко измеряется и рассчитывается. Она зависит как от массы обоих тел, так и от расстояния между ними. Чем ближе, тем сильнее. Причём с приближением тел друг к другу сила притяжения растёт в геометрической прогрессии.
На рисунке видно, как космические аппараты, пролетая вблизи крупного космического тела (некой планеты), меняют свою траекторию. Причём курс движения аппарата под номером 1, пролетающего дальше всех от массивного объекта, меняется совсем незначительно. Чего не скажешь об аппарате № 6. Планетоид меняет его направление полета кардинально.
Что такое гравитационная праща. Как она действует
Использование гравитационных маневров позволяет не только изменить направление движения космического корабля, но и скорректировать его скорость.
На рисунке изображена траектория космического корабля, обычно используемая для его разгона. Принцип действия такого маневра прост: на выделенном красным цветом участке траектории аппарат как будто догоняет убегающую от него планету. Гораздо более массивное тело силой своего притяжения увлекает меньшее за собой, разгоняя его.
Кстати, таким образом разгоняются не только космические корабли. Известно, что по галактике вовсю разгуливают небесные тела, не привязанные к звёздам. Это могут быть как сравнительно небольшие астероиды (один из которых, кстати, сейчас посещает Солнечную систему), так и планетоиды приличных размеров. Астрономы полагают, что именно гравитационная праща, т. е. воздействие более крупного космического тела, выбрасывает менее массивные объекты за пределы своих систем, обрекая их на вечные скитания в ледяном холоде пустого космоса.
Как снизить скорость
Но, применяя гравитационные маневры космических аппаратов, можно не только ускорять, но и замедлять их движение. Схема такого торможения показана на рисунке.
На выделенном красным цветом участке траектории притяжение планеты, в отличие от варианта с гравитационной пращей, будет затормаживать движение аппарата. Ведь вектор силы притяжения и направление полёта корабля противоположны.
В каких случаях это используется? В основном для выхода автоматических межпланетных станций на орбиты изучаемых планет, а также для изучения околосолнечных областей. Дело в том, что при движении к Солнцу или, например, к ближайшей к светилу планете Меркурию любой аппарат, если не применять мер для торможения, будет волей-неволей разгоняться. Наша звезда обладает невероятной массой и громадной силой притяжения. Набравший чрезмерную скорость космический аппарат не сможет выйти на орбиту Меркурия – самой маленькой планеты солнечного семейства. Корабль просто проскочит мимо, кроха Меркурий не сможет достаточно сильно притянуть его. Для торможения можно использовать двигатели. Но траектория полета к Солнцу с гравитационным маневром, скажем у Луны и затем Венеры, позволит минимизировать использование ракетной тяги. Значит, понадобится меньше топлива, и освободившийся вес можно будет использовать для размещения дополнительной исследовательской аппаратуры.
Попасть в игольное ушко
Если первые гравитационные маневры проводились робко и нерешительно, маршруты последних межпланетных космических миссий практически всегда планируются с гравитационной корректировкой. Всё дело в том, что сейчас астрофизикам, благодаря развитию компьютерной техники, а также наличию точнейших данных о телах Солнечной системы, в первую очередь их массе и плотности, доступны более точные вычисления. А рассчитывать гравитационный маневр необходимо чрезвычайно точно.
Так, прокладка траектории дальше от планеты, чем нужно, чревата тем, что дорогостоящая техника полетит совсем не туда, куда планировалось. А недооценка массы и вовсе может угрожать столкновением корабля с поверхностью.
Чемпион по маневрам
Таким, безусловно, можно считать второй космический аппарат миссии «Вояджер». Запущенный в 1977 году аппарат в настоящее время покидает пределы родной звёздной системы, удаляясь в неизвестность.
За время работы аппарат посетил Сатурн, Юпитер, Уран и Нептун. На него на всём протяжении полета действовало притяжение Солнца, от которого корабль постепенно удалялся. Но, благодаря грамотно рассчитанным гравитационным маневрам, у каждой из планет его скорость не уменьшалась, а росла. У каждой исследованной планеты маршрут был построен по принципу гравитационной пращи. Без применения гравитационной коррекции «Вояджер» не удалось бы отправить так далеко.
Кроме «Вояджеров» гравитационные маневры были использованы при запуске таких всем известных миссий, как «Розетта» или «Новые горизонты». Так, «Розетта», прежде чем отправиться на поиски кометы Чурюмова-Герасименко, совершила аж 4 разгонных гравитационных маневра у Земли и Марса.