Параллельность прямой и плоскости

Курс геометрии широк, объемен и многогранен: он включает в себя множество различных тем, правил, теорем и полезных знаний. Можно представить, что все в нашем мире состоит из простого, даже наиболее сложное. Точки, прямые, плоскости – все это есть и в вашей жизни. И они поддаются имеющимся в мире законам о соотношении объектов в пространстве. Чтобы доказать это, можно попытаться доказать параллельность прямых и плоскостей.

Что такое прямая? Прямая – это линия, которая соединяет две точки по кратчайшей траектории, не заканчиваясь и длясь с обоих сторон в бесконечность. Плоскость – это поверхность, образующаяся при кинематическом движении образующей прямой линии по направляющей. Другими словами, если две любые прямые имеют точку пересечения в пространстве, они могут лежать и в одной плоскости. Однако как выразить параллельность плоскостей и прямых, если этих данных недостаточно для подобного утверждения?

Главное условие параллельности прямой и плоскости – чтобы они не имели общих точек. В отличие от прямых, которые могут при отсутствии общих точек являться не параллельными, а расходящимися, плоскость двухмерна, что исключает такое понятие, как расходящиеся прямые. Если данное условие параллельности не соблюдено – значит, прямая пересекает данную плоскость в какой-то одной точке либо лежит в ней полностью.

Что же показывает нам условие параллельности прямой и плоскости нагляднее всего? То, что в любой точке пространства расстояние между параллельными прямой и плоскостью будет константой. При существовании хоть малейшего, в миллиардные доли градуса, уклона прямая рано или поздно пересечет плоскость за счет обоюдной бесконечности. Именно поэтому параллельность прямой и плоскости возможна только при соблюдении этого правила, иначе главное ее условие – отсутствие общих точек – соблюдено не будет.

Что можно добавить, рассказывая про параллельность прямых и плоскостей? То, что если одна из параллельных прямых принадлежит плоскости, то вторая или параллельна плоскости, или тоже принадлежит ей. Как это доказать? Параллельность прямой и плоскости, заключающей в себе прямую, параллельную данной, доказывается очень просто. Параллельные прямые не имеют общих точек – стало быть, они не пересекаются. А если прямая не пересекается с плоскостью в одной точке – значит, она или параллельна, или лежит на плоскости. Это еще раз доказывает параллельность прямой и плоскости, не имеющих точек пересечения.

В геометрии есть также теорема, которая утверждает, что если существуют две плоскости и прямая линия, перпендикулярна им обеим, то плоскости параллельны. Схожая теорема утверждает, что если две прямые бывают перпендикулярны одной любой плоскости, они обязательно будут параллельны друг другу. Верна ли и доказуема ли параллельность прямых и плоскостей, выраженная данными теоремами?

Оказывается, это так. Прямая, перпендикулярная плоскости, всегда будет строго перпендикулярна любой прямой, которая пролегает в данной плоскости и также имеет с другой прямой точку пересечения. Если прямая имеет подобные пересечения с несколькими плоскостями и во всех случаях является им перпендикулярной – значит, все данные плоскости параллельны друг другу. Наглядным примером может служить детская пирамидка: ее ось будет искомой перпендикулярной прямой, а кольца пирамидки – плоскостями.

Стало быть, доказать параллельность прямой и плоскости достаточно легко. Эти знания получаются школьниками при изучении азов геометрии и во многом определяют дальнейшее усвоение материала. Если уметь грамотно пользоваться полученными в начале обучения знаниями, можно будет оперировать куда большим количеством формул и пропускать ненужные логические связки между ними. Главное – это понимание основ. Если же его нет – то изучение геометрии можно сравнить со строительством многоэтажного дома без фундамента. Именно поэтому данная тема требует пристального внимания и досконального исследования.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.
Новости и общество
Новости и общество
Новости и общество