Какое самое большое число?

Вероятно, многие задумывались, какое число самое большое. Конечно, можно сказать, что таким числом всегда останется бесконечность или бесконечность + 1, но это вряд ли будет ответом, который хотят услышать те, кто подобным вопросом задается. Обычно требуются конкретные данные. Интересно не просто вообразить невероятно много чего-то абстрактного, а узнать, как называется самое большое число и сколько в нем нулей. А еще нужны примеры - что и где в известном и знакомом окружающем мире есть в таком количестве, чтобы проще было представить это множество, и знание о том, как такие числа можно записать.

Абстрактные и конкретные

Теоретические числа бесконечны – легко ли это вообразить или абсолютно невозможно представить – вопрос фантазии и желания. Но не признать такое сложно. Также есть еще одно обозначение, о котором не получится не упомянуть, – это бесконечность +1. Простое и гениальное решение вопроса сверхвеличин.

Условно все самые большие числа подразделяются на две группы.

Во-первых, это те, что нашли применение в обозначении количества чего-либо или использовались в математике для решения конкретных задач и уравнений. Можно сказать, что они приносят конкретную пользу.

А во-вторых, те неизмеримо огромные величины, которым есть место только в теории и абстрактной математической реальности – обозначенные цифрами и символами, получившие имена для того, чтобы просто быть, существовать как явление, или/и прославить своего открывателя. Эти числа не определяют ничего, кроме самих себя, так как нет ничего в таком количестве, о чем было бы известно человечеству.

Разные числа - не очень большие

Системы обозначения самых больших чисел в мире

Существуют две самые распространенные официальные системы, определяющие принцип, по которому даются названия большим числительным. Эти системы, признанные в тех или иных государствах, называются Американской (короткая шкала) и Английской (длинная шкала наименований).

Наименования в обеих образуются с использованием названий латинских чисел, но по разным схемам. Чтобы понять каждую из систем, лучше иметь представление о латинских составляющих:

1 unus ан-

2 duo дуо- и bis би- (дважды)

3 tres три-

4 quattuor квадри-

5 quinque квинти-

6 sex сексти-

7 septem септи-

8 octo окти-

9 novem нони-

10 decem деци-

Первая принята, соответственно, в США, а также в России (с некоторыми изменениями и заимствованиями из английской), в пограничной Соединенным Штатам Канаде и во Франции. Имена величин составляются из латинского числительного, которое показывает степень тысячи, + -ллион – суффикс, обозначающий увеличение. Исключением из этого правила является только слово «миллион» - в котором первая часть взята от латинского mille – что значит – «тысяча».

Зная латинские порядковые наименования чисел, несложно сосчитать, сколько нулей имеет каждое больше число, названное по американской системе. Формула очень проста – 3*x+3 (в этом случае x – латинское числительное). Например, биллион – число девятью нулями, триллион будет иметь двенадцать нулей, а октиллион – 27.

В голове у человека

Английская система используется большим количеством стран. Ее применяют в Великобритании, в Испании, а также во многих исторических колониях этих двух государств. Такая система дает имена большим числам по тому же принципу, что и американская, только после числа с окончанием – иллион, следующим (в тысячу раз большим) будет названное по тому же латинскому порядковому числительному, но с окончанием – иллиард. То есть после триллиона, последует не квадриллион, а триллиард. А затем уже квадриллион и квадриллиард.

Чтобы не запутаться в нулях и названиях английской системы, есть формула 6*x+3 (подходит тем числам, чье наименование заканчивается на –иллион), и 6*x+6 (для имеющих окончание -иллиард).

Использование различных систем наименований привели к тому, что одинаково названные числа по факту будут обозначать разное количество. Например, триллион в американской системе имеет 12 нулей, в английской – 21.

Крупнейшие из величин, названия которых строятся по тому же принципу и которые по праву могут относиться к самыми большим числам в мире, называются как максимальные несоставные числительные, существовавшее у древних римлян, плюс суффикс –ллион, это:

  • Вигинтиллион или 1063.
  • Центиллион или 10303.
  • Миллеиллион или 103003.

Больше миллеиллиона числа есть, но названия их, образованные описанным ранее способом, будут составными. В Риме не было отдельных слов для обозначения чисел больше тысячи. Для них миллион существовал как десять сотен тысяч.

Однако есть еще имена внесистемные, как и внесистемные числа – их собственные названия выбраны и составлены не по правилам двух вышеуказанных способов образования наименований числительных. Вот эти числа:

Мириада 104

Гугол 10 00

Асанкхейя 10140

Гуголплекс 1010100

Второе число Скьюза 1010 10 1000

Мега 2[5] (в нотации Мозера)

Мегистон 10 [5] (в нотации Мозера)

Мозер 2[2[5]] (в нотации Мозера)

Число Грэма G63 (в нотации Грэма)

Стасплекс G100 (в нотации Грэма)

И часть из них пока абсолютно негодна для применения вне теоретической математики.

Мириада

Слово, обозначавшее 10000, упоминавшееся еще в словаре Даля, устарело и вышло из обращения как конкретная величина. Однако оно широко используется для обозначения великого множества.

Асанкхейа

Числа в спирали

Одно из знаковых и самых больших чисел древности 10140 упоминается во втором веке до н. э. в знаменитом буддийском трактате Джайна-сутры. Асанкхейя происходит от китайского слова асэнци, что значит «неисчислимый». Им отмечено число космических циклов, требующихся для достижения нирваны.

Единица и восемьдесят нулей

Самое большое число, имеющее практическое применение и собственное уникальное, хотя и составное название: сто квинквавигинтиллионов или сексвигинтиллион. Обозначает оно всего-то примерное количество всех мельчайших составляющих нашей Вселенной. Есть мнение, что нулей должно быть не 80, а 81.

Чему равен один гугол?

Термин, придуманный в 38 году прошлого века девятилетним мальчиком. Число, обозначающее количество чего-то, равное 10100, десяти со ста нулями. Это больше количества самых мельчайших субатомных частиц, составляющих вселенную. Казалось бы, какое может быть практическое применение? Но оно нашлось:

  • ученые полагают, что именно через гугол или полтора гугола лет с того момента, как Большой Взрыв создал нашу Вселенную, взорвется массивнейшая из существующих черных дыр, и все перестанет существовать в том виде, в котором оно известно сейчас;
  • Алексис Лемер прославил свое имя мировым рекордом, вычислив корень тринадцатой степени из самого большого числа - гугол - стозначного.

Величины Планка

8,5 х 10^185 – это количество объемов Планка во Вселенной. Если прописывать все цифры, не применяя степень, их будет сто восемьдесят пять.

Объем Планка – это объем куба с гранью, равной дюйму (2,54 см), в котором помещается около гугола длин Планка. Каждая из них равна 0,00000000000000000000000000000616199 метра (иначе 1,616199 x 10-35). Такие мелкие частицы и большие числа не нужны в обычной повседневной жизни, но в квантовой физике, например для тех ученых, кто трудится над теорией струн, подобные значения не редкость.

Самое большое простое число

Много цифр

Простое число – то, что не имеет целых делителей, кроме единицы и самого себя.

277 232 917 − 1 – самое большое из простых чисел, которое смогли вычислить на сегодняшний день (зафиксировано в 2017 году). В нем более двадцати трех миллионов цифр.

Что такое «гуголплекс»?

Все тот же мальчик из прошлого века - Милтон Сиротта, племянник американского Эдварда Каснера, придумал еще одно удачное название для обозначения еще большей величины - десять в степени гугол. Число получило наименование "гуголплекс".

Два числа Скьюза

И первое, и второе число Скьюза относятся к самым большим числам в математике теоретической. Призваны установить предел для одной из самых сложных задач, существовавших когда-либо:

«π(x) > Li(x)».

Первое число Скьюза (Sk1):

число x меньше, чем 10^10^10^36

или e^e^e^79 (позже было сведено к дробному числу e^e^27/4, поэтому обычно среди самых больших чисел не упоминается).

Второе число Скьюза (Sk2):

число x меньше, чем 10^10^10^963

или 10^10^10^1000.

Долгие годы в теореме Пуанкаре

Время и цифры

Число 10^10^10^10^10^1,1 обозначает то количество лет, которое потребуется, чтобы все повторилось и достигло нынешнего состояния, являющегося результатом случайных взаимодействий множества мельчайших составляющих. Такие результаты теоретических подсчетов в теореме Пуанкаре. Говоря просто: если хватит времени – произойти может абсолютно все.

Число Грэма

Рекордсмен, попавший в книгу Гиннесса еще в прошлом веке. В процессе математических доказательств большое конечное число никогда не применялось. Невероятно большое. Для его обозначения используется одна из особенных систем записи больших чисел - нотация Кнута с использованием стрелок - и специальное уравнение.

Письменно выражается, как G=f64(4), где f(n)=3↑^n3. Выделено Роном Грэмом для применения в вычислениях, касающихся теории цветных гиперкубов. Число такого масштаба, что его десятичную запись не вместит даже Вселенная. Обозначается как G64 или просто G.

Стасплекс

Самое большое число, у которого есть имя. Увековечил себя таким образом Станислав Козловский, один из администраторов русскоязычного варианта "Википедии", совсем не математик, а психолог.

Число стасплекс = G100.

Цифры, цифры, цифры

Бесконечность и то, что больше нее

Бесконечность – не просто абстрактное понятие, а необъятная математическая величина. Какие бы вычисления с ее участием ни производились – суммирование, умножение или вычитание конкретных чисел из бесконечности, - результат будет ей же и равен. Вероятно, только при делении бесконечности на бесконечность можно получить единицу в ответе. Известно о бесконечном множестве четных и нечетных чисел в бесконечности, но от общей бесконечности и тех и других будет примерно половина.

Сколько бы ни было частиц в нашей Вселенной, по мнению ученых, это касается только относительно известной области. Если предположение о бесконечности вселенных верно, то возможно не только все, но и бессчетное количество раз.

Однако не все ученые согласны с теорией бесконечности. Например, Дорон Зильбергер, математик из Израиля, придерживается позиции, что числа не будут продолжаться бесконечно. По его мнению, существует число, которое так велико, что, приплюсовав к нему единицу, можно получить ноль.

Ни проверить, ни опровергнуть это пока невозможно, поэтому споры о бесконечности носят скорее философский, нежели математический характер.

Способы фиксации теоретических сверхвеличин

Математик среди уравнений и чисел

Для невероятно больших чисел количество степеней так велико, что пользоваться этим значением неудобно. Несколькими математиками были разработаны разные системы для отображения таких чисел.

Нотация Кнута с использованием системы символов–стрелок, обозначающих сверхстепень, состоящей из 64 уровней.

Например, гугол – это 10 в сотой степени, привычный вид записи 10100. По системе Кнута он будет записан как 10↑10↑2. Чем крупнее число, тем больше стрелок, возводящих изначальную цифру многократно в какую-либо степень.

Нотация Грэма – это своего доработка системы Кнута. Для обозначения количества стрелок используются числа G с порядковыми номерами:

G1 = 3↑↑…↑↑3 (количество стрелок, обозначающих сверхстепень, равно 3 ↑↑↑↑);

G2 = ↑↑…↑↑3 количество стрелок, обозначающих сверхстепень, равно G1);

И так до G63. Именно оно считается числом Грэма и записывается часто без порядкового номера.

Нотация Стейнхауза для обозначения степени степеней используются геометрические фигуры, в которые вписывается то или иное число. Стейнхауз выбрал основные – треугольник, квадрат и круг.

Число n в треугольнике обозначает число в степени этого числа, в квадрате – число в степени, равной числу в n треугольниках, вписанное в круг – в степени, тождественной степени числа, вписанного в квадрат.

Лео Мозер, придумавший такие числа-гиганты, как мега и мегистон, усовершенствовал систему Стейнхауза, введя дополнительные многоугольники и придумав способ записи, их обозначающий, – с использованием квадратных скобок. Ему также принадлежит наименование мегагон, относящееся к многоугольной геометрической фигуре с мегачислом сторон.

Одним из самых больших чисел в математике, названным в честь Мозера, считается 2 в мегагоне = 2[2[5]].

Статья закончилась. Вопросы остались?
Комментариев 2
Подписаться
Я хочу получать
Правила публикации
1
Самое большое вещественное число - это инфитеиплеон. Его придумал российский футуролог Петров Иван. Есть статья в сети (если поискать по названию числа). Это число условно больше даже самой бесконечности! о_О Но конечно это не совсем число в прямом смысле слова - это бесконечно расширяемое числовое значение. Тут скорее интересна формульная запись подобных чисел без сложной математики...
Копировать ссылку
0
Бычок
Копировать ссылку
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.