Венера по некоторым характеристикам очень похожа на Землю. Однако две эти планеты имеют и существенные различия, обусловленные особенностями формирования и эволюции каждой из них, и ученые выявляют все больше таких особенностей. Мы рассмотрим здесь подробнее один из отличительных признаков – особый характер магнитного поля Венеры, но сначала обратимся к общей характеристике планеты и некоторым гипотезам, затрагивающим вопросы ее эволюции.
Венера в Солнечной системе
Венера – вторая по близости к Солнцу планета, соседка Меркурия и Земли. Относительно нашего светила она движется по практически круговой орбите (эксцентриситет венерианской орбиты меньше, чем земной) на расстоянии в среднем 108,2 млн км. Следует отметить, что эксцентриситет – величина изменчивая, и в далеком прошлом он мог быть иным вследствие гравитационных взаимодействий планеты с другими телами Солнечной системы.
Естественных спутников Венера не имеет. Существуют гипотезы, согласно которым некогда у планеты был крупный спутник, впоследствии разрушенный действием приливных сил либо утраченный.
Некоторые ученые полагают, что Венера испытала столкновение по касательной с Меркурием, в результате чего последний был отброшен на более низкую орбиту. Венера же изменила характер вращения. Известно, что планета вращается крайне медленно (как, кстати, и Меркурий) – с периодом около 243 земных суток. Кроме того, направление ее вращения противоположно таковому у прочих планет. Можно сказать, что она вращается, как бы перевернувшись вниз головой.
Основные физические черты Венеры
Наряду с Марсом, Землей и Меркурием, Венера относится к планетам земной группы, то есть является сравнительно небольшим скалистым телом преимущественно силикатного состава. Она сходна с Землей по размерам (диаметр 94,9% земного) и массе (81,5% земной). Скорость убегания на поверхности планеты составляет 10,36 км/с (на Земле – примерно 11,19 км/с).
Из всех планет земной группы Венера обладает наиболее плотной атмосферой. Давление на поверхности превышает 90 атмосфер, средняя температура около 470 °C.
На вопрос, имеет ли Венера магнитное поле, существует следующий ответ: собственного поля у планеты практически нет, но благодаря взаимодействию солнечного ветра с атмосферой возникает «ложное», наведенное поле.
Немного о геологии Венеры
Подавляющая часть поверхности планеты сформирована продуктами базальтового вулканизма и представляет собой совокупность лавовых полей, стратовулканов, щитовых вулканов и прочих вулканических структур. Ударных кратеров обнаружено мало, и на основании подсчета их количества был сделан вывод о том, что поверхность Венеры не может быть старше полумиллиарда лет. Признаки тектоники плит на планете не прослеживаются.
На Земле тектоника плит совместно с процессами мантийной конвекции служит главным механизмом теплоотдачи, но для этого требуется достаточное количество воды. Надо думать, на Венере из-за недостатка воды тектоника плит либо прекратилась еще на раннем этапе, либо вообще не состоялась. Так что избавляться от излишков внутреннего тепла планета могла только путем глобального поступления на поверхность перегретого мантийного вещества, возможно, с полным разрушением коры.
Именно такое событие могло иметь место около 500 млн лет назад. Не исключено, что в истории Венеры оно было не единственным.
Ядро и магнитное поле Венеры
На Земле глобальное геомагнитное поле генерируется благодаря динамо-эффекту, создаваемому особой структурой ядра. Внешний слой ядра расплавлен и характеризуется наличием конвективных токов, которые совместно с быстрым вращением Земли создают достаточно мощное магнитное поле. Кроме того, конвекция способствует активной теплопередаче от внутреннего твердого ядра, содержащего много тяжелых, в том числе радиоактивных элементов, – основного источника разогрева.
Судя по всему, на соседке нашей планеты весь этот механизм не работает из-за отсутствия конвекции в жидком внешнем ядре – вот почему у Венеры нет магнитного поля.
Почему Венера и Земля столь различны?
Причины серьезного структурного различия двух похожих по физическим характеристикам планет пока не вполне ясны. Согласно одной из недавно построенных моделей, внутренняя структура скалистых планет формируется послойно, по мере прироста массы, а жесткая стратификация ядра препятствует конвекции. На Земле же многослойное ядро, предположительно, было разрушено на заре ее истории в результате столкновения с достаточно крупным объектом – Тейей. Кроме того, итогом этой коллизии считается возникновение Луны. Приливное воздействие крупного спутника на земную мантию и ядро также могут играть значительную роль в конвективных процессах.
Другая гипотеза предполагает, что изначально магнитное поле у Венеры было, однако планета утратила его по причине тектонической катастрофы или серии катастроф, речь о которых шла выше. Помимо этого, в отсутствии магнитного поля многие исследователи «винят» слишком медленное вращение Венеры и малую величину прецессии оси вращения.
Особенности венерианской атмосферы
Венера имеет чрезвычайно плотную атмосферу, состоящую главным образом из углекислого газа с малой примесью азота, сернистого ангидрида, аргона и некоторых других газов. Такая атмосфера служит источником необратимого парникового эффекта, не позволяя поверхности планеты сколько-нибудь остыть. Возможно, за состояние атмосферы «утренней звезды» также ответственен вышеописанный «катастрофический» тектонический режим ее недр.
Наибольшая часть газовой оболочки Венеры заключена в нижнем слое – тропосфере, простирающейся до высот около 50 км. Выше лежит тропопауза, а над ней – мезосфера. Верхняя граница облаков, состоящих из диоксида серы и капель серной кислоты, находится на высоте 60–70 км.
В верхних слоях атмосферы газ сильно ионизируется солнечным ультрафиолетом. Этот слой разреженной плазмы называется ионосферой. На Венере он расположен на высотах 120–250 км.
Индуцированная магнитосфера
Именно взаимодействие заряженных частиц солнечного ветра и плазмы верхней атмосферы определяет, есть ли магнитное поле у Венеры. Силовые линии магнитного поля, несомого солнечным ветром, огибают венерианскую ионосферу и образуют структуру, называемую индуцированной (наведенной) магнитосферой.
Эта структура имеет следующие элементы:
- Головная ударная волна, расположенная на высоте приблизительно в треть радиуса планеты. На пике солнечной активности область встречи солнечного ветра с ионизированным слоем атмосферы значительно приближается к поверхности Венеры.
- Магнитослой.
- Магнитопауза – собственно граница магнитосферы, находящаяся на высоте около 300 км.
- Хвост магнитосферы, где растянутые магнитные силовые линии солнечного ветра выпрямляются. Длина магнитосферного хвоста Венеры составляет от одного до нескольких десятков радиусов планеты.
Хвост характеризуется особой активностью – процессами магнитного пересоединения, ведущими к ускорению заряженных частиц. В полярных областях в результате перезамыкания могут формироваться магнитные жгуты, подобные земным. На нашей планете перезамыкание магнитных силовых линий лежит в основе явления полярных сияний.
То есть Венера имеет магнитное поле, формируемое не внутренними процессами в недрах планеты, а влиянием Солнца на атмосферу. Это поле весьма слабое – интенсивность его в среднем в тысячу раз слабее, чем у геомагнитного поля Земли, однако оно играет определенную роль в процессах, протекающих в верхней атмосфере.
Магнитосфера и устойчивость газовой оболочки планеты
Магнитосфера экранирует поверхность планеты от воздействия энергичных заряженных частиц солнечного ветра. Считается, что наличие достаточно мощной магнитосферы сделало возможным возникновение и развитие жизни на Земле. Кроме того, магнитный барьер в некоторой степени препятствует «сдуванию» атмосферы солнечным ветром.
В атмосферу проникает также ионизирующий ультрафиолет, не задерживаемый магнитным полем. С одной стороны, благодаря этому возникает ионосфера и формируется магнитный экран. Но ионизированные атомы могут покидать атмосферу, попадая в магнитный хвост и ускоряясь там. Это явление носит название убегания ионов. Если скорость, приобретаемая ионами, превышает скорость убегания, планета интенсивно теряет газовую оболочку. Такое явление наблюдается на Марсе, характеризующемся слабой гравитацией и, соответственно, малой скоростью убегания.
Венера с ее более мощной гравитацией эффективнее удерживает ионы своей атмосферы, так как им нужно набрать большую скорость, чтобы покинуть планету. Наведенное магнитное поле планеты Венера недостаточно мощно для существенного разгона ионов. Поэтому потеря атмосферы здесь далеко не так значительна, как на Марсе, несмотря на то, что интенсивность ультрафиолетового излучения гораздо выше вследствие близости к Солнцу.
Таким образом, индуцированное магнитное поле Венеры – это один из примеров сложного взаимодействия верхней атмосферы с различными видами солнечного излучения. Совместно с гравитационным полем оно является фактором устойчивости газовой оболочки планеты.