С момента начала изучения электричества решить вопрос о его накоплении и сохранении удалось лишь в 1745 году Эвальду Юргену фон Клейсту и Питеру ван Мушенбруку. Созданное в голландском Лейдене устройство позволяло аккумулировать электрическую энергию и использовать ее при необходимости.
Лейденская банка – прототип конденсатора. Ее использование в физических опытах продвинуло изучение электричества далеко вперед, позволило создать прототип электрического тока.
Что такое конденсатор
Собирать электрический заряд и электроэнергию – основное назначение конденсатора. Обычно это система из двух изолированных проводников, расположенных как можно ближе друг к другу. Пространство между проводниками заполняют диэлектриком. Накапливаемый на проводниках заряд выбирают разноименным. Свойство разноименных зарядов притягиваться способствует большему его накоплению. Диэлектрику отводится двойственная роль: чем больше диэлектрическая проницаемость, тем больше электроемкость, заряды не могут преодолеть преграду и нейтрализоваться.
Электроемкость – основная физическая величина, характеризующая возможность конденсатора накапливать заряд. Проводники называют обкладками, электрическое поле конденсатора сосредотачивается между ними.
Энергия заряженного конденсатора, по всей видимости, должна зависеть от его емкости.
Электроемкость
Энергетический потенциал дает возможность применять (большая электроемкость) конденсаторы. Энергия заряженного конденсатора используется при необходимости применить кратковременный импульс тока.
От каких величин зависит электроемкость? Процесс зарядки конденсатора начинается с подключения его обкладок к полюсам источника тока. Накапливаемый на одной обкладке заряд (величина которого q) принимается за заряд конденсатора. Электрическое поле, сосредоточенное между обкладками, имеет разность потенциалов U.
Электроемкость (С) зависит от количества электричества, сосредоточенного на одном проводнике, и напряжения поля: С= q/U.
Измеряется эта величина в Ф (фарадах).
Емкость всей Земли не идет в сравнение с емкостью конденсатора, величина которого примерно с тетрадь. Накапливаемый мощный заряд может быть использован в технике.
Однако накопить неограниченное количество электричества на обкладках нет возможности. При возрастании напряжения до максимального значения может произойти пробой конденсатора. Пластины нейтрализуются, что может привести к порче устройства. Энергия заряженного конденсатора при этом полностью идет на его нагревание.
Величина энергии
Нагревание конденсатора происходит из-за превращения энергии электрического поля во внутреннюю. Способность конденсатора совершать работу по перемещению заряда говорит о наличии достаточного запаса электроэнергии. Чтобы определить, как велика энергия заряженного конденсатора, рассмотрим процесс его разрядки. Под действием электрического поля напряжением U заряд величиной q перетекает с одной пластины на другую. По определению, работа поля равна произведению разности потенциалов на величину заряда: A=qU. Это соотношение справедливо лишь для постоянного значения напряжения, но в процессе разрядки на пластинах конденсатора происходит постепенное его уменьшение до нуля. Чтобы избежать неточностей, возьмем его среднее значение U/2.
Из формулы электроемкости имеем: q=CU.
Отсюда энергия заряженного конденсатора может быть определена по формуле:
W = CU2/2.
Видим, что ее величина тем больше, чем выше электроемкость и напряжение. Чтобы ответить на вопрос о том, чему равна энергия заряженного конденсатора, обратимся к их разновидностям.
Виды конденсаторов
Поскольку энергия электрического поля, сосредоточенного внутри конденсатора, напрямую связана с его емкостью, а эксплуатация конденсаторов зависит от их конструктивных особенностей, используют различные типы накопителей.
- По форме обкладок: плоские, цилиндрические, сферические и т. д.
- По изменению емкости: постоянные (емкость не меняется), переменные (изменяя физические свойства, меняем емкость), подстроечные. Изменение емкости можно проводить, изменяя температуру, механическое или электрическое напряжение. Электроемкость подстроечных конденсаторов меняется изменением площади обкладок.
- По типу диэлектрика: газовые, жидкостные, с твердым диэлектриком.
- По виду диэлектрика: стеклянные, бумажные, слюдяные, металлобумажные, керамические, тонкослойные из пленок различного состава.
В зависимости от типа различают и иные конденсаторы. Энергия заряженного конденсатора зависит от свойств диэлектрика. Основной величиной называют диэлектрическую проницаемость. Электроемкость ей прямо пропорциональна.
Плоский конденсатор
Рассмотрим простейшее устройство для собирания электрического заряда – плоский конденсатор. Это физическая система из двух параллельных пластин, между которыми находится слой диэлектрика.
Форма пластин может быть и прямоугольной, и круглой. Если есть необходимость получать переменную емкость, то пластины принято брать в виде полудисков. Поворот одной обкладки относительно другой приводит к изменению площади пластин.
Будем считать, что площадь одной пластины равна S, расстояние между пластинами примем равным d, диэлектрическая проницаемость наполнителя - ε. Электроемкость такой системы зависит только от геометрии конденсатора.
С = εε0S/d.
Энергия плоского конденсатора
Видим, что емкость конденсатора прямо пропорциональна полной площади одной пластины и обратно пропорциональна расстоянию между ними. Коэффициент пропорциональности - электрическая постоянная ε0. Увеличение диэлектрической проницаемости диэлектрика позволят нарастить электроемкость. Уменьшение площади пластин позволяет получить подстроечные конденсаторы. Энергия электрического поля заряженного конденсатора зависит от его геометрических параметров.
Используем формулу расчета: W = CU2/2.
Определение энергии заряженного конденсатора плоской формы проводят по формуле:
W = εε0S U2/(2d).
Использование конденсаторов
Способность конденсаторов плавно собирать электрический заряд и достаточно быстро его отдавать используется в различных областях техники.
Соединение с катушками индуктивности позволяет создавать колебательные контуры, фильтры токов, цепи обратной связи.
Фотовспышки, электрошокеры, в которых происходит практически мгновенный разряд, используют способность конденсатора создать мощный импульс тока. Зарядка конденсатора происходит от источника постоянного тока. Сам конденсатор выступает как элемент, разрывающий цепь. Разряд в обратном направлении происходит через лампу малого омического сопротивления практически мгновенно. В электрошокере этим элементом служит тело человека.
Конденсатор или аккумулятор
Способность долгое время сохранять накопленный заряд дает замечательную возможность использовать его в качестве накопителя информации или хранилища энергии. В радиотехнике это свойство широко используется.
Заменить аккумулятор, к сожалению, конденсатор не в состоянии, поскольку имеет особенность разряжаться. Накопленная им энергия не превышает нескольких сотен джоулей. Аккумулятор может сохранять большой запас электроэнергии длительно и практически без потерь.