Альдегидами называют органические вещества, относящиеся к карбонильным соединениям, содержащим функциональную группу –СОН, которая именуется карбонильной группой.
В зависимости от характера углеводородного скелета молекулы альдегиды бывают предельными, непредельными и ароматическими. Их молекулы могут также включать атомы галогенов или дополнительные функциональные группы. Общая формула насыщенных альдегидов имеет вид CnH2nO. В соответствии с номенклатурой ИЮПАК названия их оканчиваются суффиксом –аль.
Окисление альдегидов имеет важное значение в промышленности, поскольку они довольно легко превращаются в карбоновые кислоты. Окислителями в этом случае могут послужить гидроксид меди, оксид серебра или даже кислород воздуха.
Строение карбонильной группы
Электронное строение двойной связи в группе С=О характеризуется образованием одной σ-связи и еще одной π-связи. Атом С находится в состоянии sp2-гибридизации, молекула плоского строения с валентными углами между связями около 1200. Отличие двойной связи в этой функциональной группе заключено в том, что она расположена между атомом углерода и весьма электроотрицательным атомом кислорода. В результате электроны притянуты к атому О, а значит, эта связь очень сильно поляризована.
Содержание в альдегидной группе такой поляризованной двойной связи можно назвать главной причиной высокой реакционноспособности альдегидов. Для альдегидов наиболее характерны реакции присоединения атомов или их групп по С=О связи. И легче всего протекают реакции нуклеофильного присоединения. Также для альдегидов типичны реакции с участием атомов Н из функциональной группы альдегидов. Из-за электроноакцепторного влияния группы С=О происходит повышение полярности связи. Это в свою очередь является причиной относительно легкого окисления альдегидов.
Отдельные представители альдегидов
Формальдегид (муравьиный альдегид или метаналь) СН2О является газообразным веществом с весьма острым запахом, который получают обычно пропусканием смеси паров метанола с воздухом через раскаленную сетку из медной или серебряной сетки. Его 40%-й водный раствор называется формалином. Формальдегид легко вступает в реакции, многие из которых лежат в основе промышленного синтеза целого ряда важных веществ. Его используют и для получения изопренового каучука, пентаэритрита, многих лекарственных веществ, различных красителей, для дубления кожи, в качестве дезинфицирующего и дезодорирующего средства. Формальдегид довольно токсичен, его ПДК в воздухе составляет 0,001 мг/л.
Ацетальдегид (уксусный альдегид, этаналь) СН3СОН является бесцветной жидкостью с удушающим запахом, который при разбавлении его водой приобретает фруктовый аромат. Ацетальдегид обладает всеми основными свойствами альдегидов. Окислением уксусного альдегида производят огромные объемы уксусной кислоты и уксусного ангидрида, разнообразных фармацевтических препаратов.
Акролеин (пропеналь) CH2=CH-СОН, простейший ненасыщенный альдегид является бесцветной легколетучей жидкостью. Его пары сильно раздражают слизистые глаз и верхних дыхательных путей. Очень ядовит, ПДК его содержания в воздухе составляет 0,7 мг/м3. Пропеналь - промежуточный продукт синтеза некоторых полимеров, необходим в производстве отдельных лекарственных препаратов.
Бензальдегид (бензойный альдегид) С6Н5СОН является бесцветной желтеющей при хранении жидкостью с ароматом горького миндаля. Он довольно быстро окисляется воздухом до бензойной кислоты. Содержится в эфирных маслах растений (нероли, пачулей), а в виде глюкозида - в ядрах косточек горького миндаля, вишни, абрикоса и персика. Как душистое вещество его применяют в парфюмерии, в виде компонента пищевых эссенций, как сырье для синтеза других душистых веществ (коричного альдегида, жасминальдегида).
Реакция серебряного зеркала
Окисление альдегидов оксидом серебра является самой показательной качественной реакцией на соответствующую форму функциональной группы. Свое название эта реакция получила благодаря тонкому серебряному налету на стенках пробирки, образующемуся в ходе этой реакции.
Суть ее заключается во взаимодействии альдегида R-СОН с аммиачным раствором оксида серебра(I), который представляет собой растворимое комплексное соединение [Ag(NH3)2]OH и носит название реактив Толленса. Реакцию осуществляют при температурах, близких к температуре кипения воды (80–100 °С). При этом происходит окисление альдегидов до соответствующих им карбоновых кислот, а окислитель восстанавливается до металлического серебра, выпадающего в осадок.
Приготовление реактивов
Для качественного определения группы -СОН в альдегидах сначала готовят комплексное соединение серебра. Для этого в пробирку наливают немного раствора аммиака (гидроксида аммония) в воде и следом небольшое количество нитрата серебра. При этом образующийся осадок оксида серебра тут же исчезает:
2AgNO3 + 2NH3 + Н2О -> Ag2O↓ + 2NH4NO3
Ag2O + 4NΗ3 + Η2О -> 2[Ag(NΗ3)2]ОΗ
Более надежные результаты дает реактив Толленса, приготовленный с добавлением щелочи. Для этого 1 г AgNO3 растворяют в 10 г дистиллированной воды и добавляют равный объем концентрированного гидроксида натрия. В результате выпадает осадок Ag2O, который исчезает при добавлении концентрированного раствора гидроксида аммония. Использовать для проведения реакции нужно только свежеприготовленный реактив.
Механизм реакции
Реакции серебряного зеркала соответствует уравнение:
2[Ag(NΗ3)2]OΗ + НСОΗ -> 2Ag↓ + ΗCOONΗ4 + 3NΗ3 + Н2О
Стоит отметить, что для альдегидов такое взаимодействие изучено недостаточно. Механизм данной реакции неизвестен, но предполагается радикальный или же ионный вариант окисления. По гидроксиду диамминсеребра вероятнее всего реализуется присоединение с образованием серебряной соли диола, от которого затем отщепляется серебро с образованием карбоновой кислоты.
Для успешного проведения опыта чрезвычайно важна чистота используемой посуды. Связано это с тем, что образующиеся в ходе опыта коллоидные частицы серебра должны прицепиться к поверхности стекла, создав зеркальную поверхность. В присутствии малейших загрязнений оно будет выпадать в виде серого хлопьевидного осадка.
Для очистки емкости следует использовать растворы щелочей. Так, для этих целей можно взять раствор NaOH, который нужно смыть большим объемом дистиллированной водой. На поверхности стекла не должно присутствовать жировых следов и механических частиц.
Окисление гидроксидом меди
Реакция окисления альдегидов гидроксидом меди (II) также довольно эффектна и эффективна в определении типа функциональной группы. Протекает она при температуре соответствующей кипячению реакционной смеси. При этом альдегиды восстанавливают двухвалентную медь в составе реактива Фелинга (свежеприготовленный аммиачный раствор Cu(OH)2) до одновалентной. Сами же они окисляются по причине внедрения атома кислорода по связи С-Η (степень окисления С изменяется с +1 на +3).
Визуально за ходом реакции можно проследить по изменению окраски смеси растворов. Голубоватый осадок гидроксида меди постепенно превращается желтый, соответствующий гидроксиду меди одновалентной и дальнейшее появление яркого красного осадка Cu2O.
Этому процессу соответствует уравнение реакции:
R-СОН + Cu2+ + NaOH + Н2О -> R-COONa + Cu2O + 4Н+
Действие реактивом Джонса
Стоит отметить, что на альдегиды такой реактив действует наилучшим образом. В этом случае окисление не требует нагревания и проводится при температуре 0-20 °С в течение довольно короткого отрезка времени, а выход продуктов составляет больше 80%. Главным недостатком реагента Джонса состоит в отсутствии высокой избирательности в отношении других функциональных групп, да к тому же кислая среда порой приводит к изомеризации или деструкции.
Реагент Джонса представляет собой раствор оксида хрома (VI) в разбавленной серной кислоте и ацетоне. Его также можно получить из дихромата натрия. При окислении альдегидов образуются под действием этого реактива карбоновые кислоты.
Промышленное окисление кислородом
Окисление ацетальдегида в промышленности осуществляют воздействием кислорода в присутствии катализаторов - ионов кобальта или марганца. Сначала образуется надуксусная кислота:
СН3-СОН + О2 –> СН3-СОООН
Она в свою очередь взаимодействует со второй молекулой уксусного альдегида и через перекисное соединение дает две молекулы уксусной кислоты:
СН3-СОООН + СН3-СОН –> 2СН3-СООН
Окисление ведется при температуре 60-70 °С и давлении 2·105 Па.
Взаимодействие с раствором йода
Для окисления альдегидных групп иногда применяется раствор йода в присутствии щелочи. Особое значение этот реактив имеет в процессе окисления углеводов, поскольку действует очень избирательно. Так под его влиянием D-глюкоза превращается в D-глюконовую кислоту.
Йод в присутствии щелочей образует гипойодид (весьма сильный окислитель): I2 + 2NaOΗ –> NaIO + NaI + Н2О.
Под действием гипойодида формальдегид превращается в метановую кислоту: ΗСОΗ + NaIO + NaOΗ –> ΗCOONa + NaI + Н2О.
Окисление альдегидов йодом используют в аналитической химии для определения количественного их содержания в растворах.
Окисление диоксидом селена
В отличие от предыдущих реактивов, под действием диоксида селена альдегиды превращаются в дикарбонильные соединения, а из формальдегида образуется глиоксаль. Если рядом с карбонилом расположены метиленовые или метильные группы, то они могут превращаться в карбонильные. Как растворитель для SeO2 обычно используют диоксан, этанол или ксилол.
По одной из методик реакцию проводят в трехгорлой колбе, соединенной с мешалкой, термометром и обратным холодильником. К исходному веществу, взятому в количестве 0,25 моль, каплями прибавляют раствор 0,25 моль диоксида селена в 180 мл диоксана, а также 12 мл Н2О. Температура не должна превышать 20 °C (при необходимости колбу охлаждают). После этого при постоянном перемешивании раствор кипятят в течении 6 часов. Далее горячий раствор фильтруют для отделения селена и промывают осадок диоксаном. После вакуумной отгонки растворителя остаток фракционируют. Основную фракцию отбирают в широком температурном интервале (20-30 °C) и повторно ректифицируют.
Аутоокисление альдегидов
Под действием кислорода воздуха при комнатной температуре окисление альдегидов происходит очень медленно. Главными продуктами этих реакций являются соответствующие карбоновые кислоты. Механизм аутоокисления родственен промышленному окислению этаналя до уксусной кислоты. Одним из промежуточных продуктов является надкислота, которая взаимодействует с еще одной молекулой альдегида.
Благодаря тому, что этот тип реакций ускоряется под действием света, перекисей, и следов тяжелых металлов, можно сделать вывод о ее радикальном механизме. Формальдегид в водных растворах значительно хуже своих собратьев окисляется воздухом, из-за того, что существует в них в виде гидратированного метиленгликоля.
Окисление альдегидов перманганатом калия
Наиболее успешно эта реакция происходит в кислой среде. Визуально оценить ее прохождение можно по потере интенсивности и полному обесцвечиванию розовой окраски раствора марганцовки. Реакция проходит при комнатной температуре и нормальном давлении, поэтому она не требует особых условий. Достаточно в пробирку налить 2 мл формальдегида и 1 мл подкисленного серной кислотой раствора перманганата калия. Пробирку с раствором нужно осторожно встряхнуть для перемешивания реагентов:
5СН3-СОН + 2KMnO4 + 3H2SO4 = 5СН3-СООН + 2MnSO4 + K2SO4 + 3Н2О
Если ту же реакцию вести при повышенных температурах, то метаналь легко окисляется до углекислого газа:
5СН3-СОН + 4KMnO4 + 6H2SO4 = 5СО2 + 4MnSO4 + 2K2SO4 + 11Н2О