Особенности, строение и функции клеточных мембран

В 1972 году была выдвинута теория, согласно которой частично проницаемая мембрана окружает клетку и выполняет ряд жизненно важных задач, а строение и функции клеточных мембран являются значимыми вопросами касательно правильного функционирования всех клеток в организме. Клеточная теория получила широкое распространение в 17 веке, вместе с изобретением микроскопа. Стало известно, что растительные и животные ткани состоят из клеток, но из-за низкой разрешающей способности прибора невозможно было увидеть какие-то барьеры вокруг животной клетки. В 20-м веке химическая природа мембраны исследовалась более детально, было выяснено, что ее основу составляют липиды.

строение и функции клеточных мембран

Строение и функции клеточных мембран

Клеточная мембрана окружает цитоплазму живых клеток, физически отделяя внутриклеточные компоненты от внешней среды. Грибы, бактерии и растения также имеют клеточные стенки, которые обеспечивают защиту и препятствуют прохождению крупных молекул. Клеточные мембраны также играют роль в становлении цитоскелета и прикреплении к внеклеточному матриксу других жизненно важных частиц. Это нужно для того, чтобы удерживать их вместе, формируя ткани и органы организма. Особенности строения клеточной мембраны включают проницаемость. Основной функцией является защита. Мембрана состоит из фосфолипидного слоя со встроенными белками. Эта часть участвует в таких процессах, как клеточная адгезия, ионная проводимость и сигнальные системы и служит в качестве поверхности крепления для нескольких внеклеточных структур, в том числе стенки, гликокаликса и внутреннего цитоскелета. Мембрана также сохраняет потенциал клетки, работая как селективный фильтр. Она является селективно проницаемой для ионов и органических молекул и управляет перемещением частиц.

строение клетки клеточная мембрана ядро

Биологические механизмы с участием клеточной мембраны

1. Пассивная диффузия: некоторые вещества (малые молекулы, ионы), такие как двуокись углерода (СО2) и кислорода (О2), могут проникать через плазматическую мембрану путем диффузии. Оболочка действует как барьер для определенных молекул и ионов, они могут концентрироваться по обе стороны.

2. Трансмембранный белок каналов и транспортеров: питательные вещества, такие как глюкоза или аминокислоты, должны попасть в клетку, а некоторые продукты обмена веществ должны ее покинуть.

3. Эндоцитоз - это процесс, при котором поглощаются молекулы. В плазматической мембране создается небольшая деформация (инвагинация), в которой вещество, подлежащее транспортировке, заглатывается. Это требует энергии и, таким образом, является формой активного транспорта.

4. Экзоцитоз: происходит в различных клетках для удаления непереваренных остатков веществ, принесенных эндоцитозом, чтобы секретировать вещества, такие как гормоны и ферменты, и транспортировать вещество полностью через клеточный барьер.

особенности строения клеточной мембраны

Молекулярная структура

Клеточная мембрана - это биологическая оболочка, состоящая преимущественно из фосфолипидов и отделяющая содержание всей клетки от внешней среды. Процесс образования происходит самопроизвольно при нормальных условиях. Чтобы понять этот процесс и правильно описать строение и функции клеточных мембран, а также свойства, необходимо оценить характер фосфолипидных структур, для которых является свойственной структурная поляризация. Когда фосфолипиды в водной среде цитоплазмы достигают критической концентрации, они объединяются в мицеллы, которые являются более стабильными в водной среде.

строение наружной клеточной мембраны

Мембранные свойства

  • Стабильность. Это значит, что после образования распад мембраны является маловероятным.
  • Прочность. Липидная оболочка достаточно надежная, чтобы предотвратить прохождение полярного вещества, через образованную границу не могут пройти как растворенные вещества (ионы, глюкоза, аминокислоты), так и гораздо более крупные молекулы (белки).
  • Динамичный характер. Это, пожалуй, наиболее важное свойство, если рассматривать строение клетки. Клеточная мембрана может подвергаться различным деформациям, может складываться и сгибаться и при этом не разрушиться. При особых обстоятельствах, например, при слиянии везикул или бутонизации, она может быть нарушена, но только на время. При комнатной температуре ее липидные составляющие находятся в постоянном, хаотическом движении, образуя стабильную текучую границу.

строение клетки клеточная мембрана

Жидкая мозаичная модель

Говоря про строение и функции клеточных мембран, важно отметить, что в современном представлении мембрана как жидкая мозаичная модель, была рассмотрена в 1972 году учеными Сингером и Николсоном. Их теория отражает три основные особенности структуры мембраны. Интегральные мембранные белки способствуют мозаичным шаблоном для мембраны, и они способны на боковое движение в плоскости из-за изменчивой природы липидной организации. Трансмембранные белки являются также потенциально мобильными. Важной особенностью структуры мембраны является ее асимметрия. Что представляет собой строение клетки? Клеточная мембрана, ядро, белки и так далее. Клетка является основной единицей жизни, и все организмы состоят из одной или многих клеток, каждая их которых имеет естественный барьер, отделяющий ее от окружающей среды. Эта внешняя граница ячейки также называется плазматической мембраной. Она состоит из четырех различных типов молекул: фосфолипиды, холестерин, белки и углеводы. Жидкая мозаичная модель описывает структуру клеточной мембраны следующим образом: гибкая и эластичная, по консистенции напоминает растительное масло, так что все отдельные молекулы просто плавают в жидкой среде, и они все способные двигаться вбок в пределах этой оболочки. Мозаика представляет собой что-то, что содержит много разных деталей. В плазматической мембране она представлена фосфолипидами, молекулами холестерина, белками и углеводами.

Фосфолипиды

Фосфолипиды составляют основную структуру клеточной мембраны. Эти молекулы имеют два различных конца: голову и хвост. Головной конец содержит фосфатную группу и является гидрофильным. Это значит, что он притягивается к молекулам воды. Хвост состоит из водорода и атомов углерода, называемых цепочками жирных кислот. Эти цепи гидрофобны, они не любят смешиваться с молекулами воды. Этот процесс напоминает то, что происходит, когда вы льете растительное масло в воду, то есть оно в ней не растворяется. Особенности строения клеточной мембраны связаны с так называемым липидным бислоем, который состоит из фосфолипидов. Гидрофильные фосфатные головы всегда располагаются там, где есть вода в виде внутриклеточной и внеклеточной жидкости. Гидрофобные хвосты фосфолипидов в мембране организованы таким образом, что держат их подальше от воды.


строение клетки клеточная мембрана

Холестерин, белки и углеводы

Услышав слово "холестерин", люди обычно думают, что это плохо. Однако на самом деле холестерин является очень важным компонентом клеточных мембран. Его молекулы состоят из четырех колец водорода и атомов углерода. Они гидрофобны и встречаются среди гидрофобных хвостов в липидном би-слое. Их важность заключается в поддержании консистенции, они укрепляют мембраны, предотвращая пересечение. Молекулы холестерина также держат фосфолипидные хвосты от вступления в контакт и твердевания. Это гарантирует текучесть и гибкость. Мембранные белки выполняют функции ферментов по ускорению химических реакций, выступают в качестве рецепторов для специфических молекул или транспортируют вещества через клеточную мембрану.

Углеводы, или сахариды, встречаются только на внеклеточной стороне мембраны клетки. Вместе они образуют гликокаликс. Он обеспечивает амортизацию и защиту плазматической мембраны. На основе структуры и типа углеводов в гликокаликсе организм может распознавать клетки и определять, должны ли они быть там или нет.

Мембранные белки

Строение клеточной мембраны животной клетки невозможно представить без такого значимого компонента, как белок. Несмотря на это, они могут значительно уступать по размерам другой важной составляющей – липидам. Существует три вида основных мембранных белков.

  • Интегральные. Они полностью охватывают би-слой, цитоплазму и внеклеточную среду. Они выполняют транспортную и сигнализирующую функцию.
  • Периферические. Белки прикрепляются к мембране при помощи электростатических или водородных связей в их цитоплазматических или внеклеточных поверхностях. Они участвуют в основном как средство крепления для интегральных белков.
  • Трансмембранные. Они выполняют ферментативную и сигнальную функции, а также модулируют основную структуру липидного би-слоя мембраны.

строение клеточной мембраны животной клетки

Функции биологических мембран

Гидрофобный эффект, который регламентирует поведение углеводородов в воде, контролирует структуры, образованные посредством мембранных липидов и мембранных белков. Многие свойства мембран даруются носителями липидных би-слоев, образующими базовую структуру для всех биологических мембран. Интегральные мембранные белки частично спрятаны в липидном би-слое. Трансмембранные белки имеют специализированную организацию аминокислот в их первичной последовательности.

Периферические мембранные белки очень похожи на растворимые, но они также привязаны к мембранам. Специализированные клеточные мембраны имеют специализированные функции клеток. Как строение и функции клеточных мембран оказывают влияние на организм? От того, как устроены биологические мембраны, зависит обеспечение функциональности всего организма. Из внутриклеточных органелл, внеклеточного и межклеточных взаимодействий мембран создаются структуры, необходимых для организации и выполнения биологических функций. Многие структурные и функциональные особенности являются общими для бактерий, эукариотических клеток и оболочечных вирусов. Все биологические мембраны построены на липидном би-слое, что обуславливает наличие ряда общих характеристик. Мембранные белки обладают множеством специфических функций.

  • Контролирующая. Плазматические мембраны клеток определяют границы взаимодействия клетки с окружающей средой.
  • Транспортная. Внутриклеточные мембраны клеток разделены на несколько функциональных блоков с различной внутренней композицией, каждая из которых поддерживается необходимой транспортной функцией в сочетании с проницаемостью управления.
  • Сигнальная трансдукция. Слияние мембран обеспечивает механизм внутриклеточного везикулярного оповещения и препятствования разного рода вирусам свободно проникать в клетку.

строение клетки клеточная мембрана

Значение и выводы

Строение наружной клеточной мембраны оказывает влияние на весь организм. Она играет важную роль в защите целостности, позволяя проникновение только выбранных веществ. Это также хорошая база для крепления цитоскелета и клеточной стенки, что помогает в сохранении формы клетки. Липиды составляют около 50% массы мембраны большинства клеток, хотя этот показатель варьируется в зависимости от типа мембраны. Строение наружной клеточной мембраны млекопитающих являются более сложным, там содержатся четыре основных фосфолипида. Важным свойством липидных би-слоев является то, что они ведут себя как двумерные жидкости, в которой отдельные молекулы могут свободно вращаться и перемещаться в боковых направлениях. Такая текучесть - это важное свойство мембран, которое определяется в зависимости от температуры и липидного состава. Благодаря углеводородной кольцевой структуре холестерин играет определенную роль в определении текучести мембран. Избирательная проницаемость биологических мембран для малых молекул позволяет клетке контролировать и поддерживать ее внутреннюю структуру.

Рассматривая строение клетки (клеточная мембрана, ядро и так далее), можно сделать вывод о том, что организм – это саморегулирующая система, которая без посторонней помощи не сможет себе навредить и всегда будет искать пути для восстановления, защиты и правильного функционирования каждой клеточки.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.